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ABSTRACT

In applications where the use of video surveillance is neces-

sary and/or beneficial, it is a common goal to identify the con-

tents of the video automatically. Of particular interest in such

applications is the ability to recognize locations in the envi-

ronment, where events occur, and describe the events com-

mon to those locations. This is the goal of scene understand-

ing.

Scene understanding is traditionally addressed from one

of two separate points-of-view: the description of the under-

lying environment or the action taking-place throughout the

scene. Each of these facets is required to address the over-

arching goal but, is insufficient independently to address the

problem entirely. These facets are, in fact, dependent and by

considering both, a more complete description becomes avail-

able. In this paper, we describe a novel, data-driven scene

understanding and classification technique that captures and

utilizes information about both the environment and activity

within a scene.

Index Terms— multilevel model, hierarchical classifi-

cation, video processing, scene understanding, supervised

learning

1. INTRODUCTION

In the work exposited herein, it is our goal to describe scenes

of several agents, performing different actions, and then to

use these descriptions in a supervised classification setting as

training data to compare/classify query/test scenes.

Current techniques focus on describing either the environ-

ment or the motion/action with probability density functions

(mixture models, etc.). Some of the efforts that endeavor to

describe the environment utilize segmentation techniques to

separate the constituents, e.g. [1]. However, many utilize a

mulit-level approach to segment the constituents sequentially,

e.g. [2] and [3], utilizing learned or defined distributions to

classify different regions.

Works focusing on describing and/or classifying the ac-

tions in a scene are varied in approach. While some, e.g.
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[4], do utilize multi-level techniques for robustness, some,

e.g. [5], also learn parameters to fit dynamical models while,

still, others, e.g. [6], utilize statistical inference from graphi-

cal models.

While these techniques perform well and solve their in-

tended problem, they do not address the problem of compar-

ing scenes for both environment and activity. Only the de-

scription of one or the other (environment or motion/action)

is available, not both. It is this problem we endeavor to ad-

dress.

We approach solving this problem by leveraging a partic-

ular scene decomposition technique to describe the environ-

ment and the motion/action. We can then utilize the infor-

mation from each sub-problem as additional information to

simplify the other. The result is a two-fold description of the

scene provided for quantized sub-regions. This layered, or

multi-level description allows for hierarchical classification

of subsequent query scenes for more thorough descriptions.

The remainder of this paper is organized as follows: Sec-

tion 2 encompasses the description of our technique for scene

understanding and its application, Section 3 details an exper-

imental application of our method to some example data and

we conclude in Section 4.

2. METHODS

We start with a video sequence represented by X (x, y, t)
where (x, y) ∈ I are the pixel coordinates in the image

plane I = [1, w] × [1, h] ⊂ N
+ × N

+ with height and

width indicated by h and w, respectively, and the frame index

t ∈ [ti, tf ] ⊂ N
+. We partition it along its three dimensions,

two spatial and one temporal. The temporal partitioning

is done via the windowing that produces X(x, y, t) with t

constrained to the set T = [t1, tn] ⊂ [ti, tf ].

In this effort, the spatial partitioning remains constant

throughout the time-window. That is, we assume the video

sequence is produced via a stationary camera. We first seg-

ment the field-of-view (FOV) into regions that correspond to

different activities within the scene. Then we provide two

descriptions: one for the activity in each region and one for

the regions themselves.

We first transform our video-cube X into a matrix. This

is accomplished by vectorizing each frame Xj = X(x, y, tj)



∀tj ∈ T in the usual way: concatenating the columns to pro-

duce a vector

yj = [Xj(x1, y), Xj(x2, y), . . . , Xj(xw−1, y), Xj(xw, y)]
tr

(1)

These vectors are then arranged into a matrix

Y = [y1, y2, . . . , yn−1, yn], (2)

to represent the data. It is this matrix that we subsequently de-

compose using robust subspace recovery - dual sparsity pur-

suit (RoSuRe-DSP)[7]. The decomposition takes the form

Y = BW + F , (3)

where the columns of B(s, t) are the low-rank basis vectors

for the data, the background of the time-windowed video

sequence, W is a coefficient matrix, and the columns of

F(s, t) correspond to the sparse foreground components for

each frame, the movers. Here, s ∈ S is the index of the

pixels in each frame. Making use of the correspondence be-

tween values of s and pairs (x, y), we construct the functions

B(x, y, t) and F (x, y, t) that are the background (low-rank)

and foreground (sparse) components over the image plane I.

2.1. The partitioning of the FOV

To ensure that the partitioning of the FOV corresponds to dif-

ferent activities, we consider all the motion contained in X

to segment the regions. Since the decomposition has already

separated the movement (F ) from the stationary (B), we can

perform our computations on just the moving part.

Define a summary function, P (x, y) ∈ [0, 255], of all mo-

tion in X thus:

P (x, y) =
∑

t∈T

F (x, y, t). (4)

This image represents the sum of all foreground components

throughout the time-windowed video sequence. It is possible

to localize regions of activity by decomposing P (x, y) into

partitions Ul where l ∈ Λ is an index set for the partitions, i.e.

regions of interest (ROIs).

To aid in the segmentation of different regions of activity,

we follow a procedure similar to [8], and define a threshold

set
Q = {q ∈ I|P (q) > τ}, (5)

and an associated indicator function:

I(q) =

{

0, q ∈ Q,

∞, otherwise.
(6)

The value for this threshold τ was chosen experimentally in

this effort. This threshold allows the tuning of the amount

of activity required to determine a ROI. Such additional for-

malism facilitates the computation of the traditional distance

transform of the image P (x, y), ∀p ∈ I thus:

D(p) = min
q∈I

(d(p, q) + I(q)) . (7)

Local maxima of D(p) provide the boundaries of a partition-

ing of the set into subsets denotedUl, our ROIs. These subsets

can be projected onto the summary functionP (x, y), and thus

the time-windowed set X(x, y, t) as ROIs:

Vl = {(x, y) ∈ I|D(x, y) ∈ Ul}, ∀t ∈ T (8)

2.2. Description of the ROIs

To describe the environment of the scene observed in the

time-windowed video sequence X(x, y, t), we first separate

the ROIs based on the decomposition described in §2.1. This

is accomplished by considering the background of the video

sequence over each region l:

Bl = {B(x, y, t)|(x, y) ∈ Vl}. (9)

A feature set, fl, for each background subset Bl is constructed

following the SURF-128[9] algorithm. These descriptors are

invariant under affine transformations and capture details

about the constituent objects in a scene. A comparison be-

tween regions can be performed by finding and quantifying

the number and strength of matches between respective de-

scriptor feature sets.

This comparison is performed using the nearest neighbor

ratio matching strategy[10]. We proceed by finding the near-

est neighbors (c.f. k-nearest neighbors, k=2) to the features

in the query set fl from the training sets of descriptors. The

distance (e.g. Euclidean distance), between these descriptors

serves as a quantifier of the strength of the potential match.

The region described by the candidate set of descriptors with

the greatest number of matches to the test set is considered

the most similar region.

2.3. Region Activity Description

The action description utilized in this effort is one of activity

density. For each region Vl, we define the activity density:

Al(t) =
∑

(x,y)∈Vl

F (x, y, t). (10)

This results in the time-series Al(t) for each ROI Vl that de-

picts the density of the activity in that region for he time-

window T .

To eliminate the necessity of aligning these time-series for

comparison, we consider the Fourier representation of these

series,
Al(t) = F (Al(t)) , (11)

normalized for unit power, as the signature for the activity

density in ROI l for time-window T . To discern/categorize

these representations, the Fourier coefficients can be com-

pared directly.

2.4. Training and Classification Framework

With these comparison tools defined, it is possible to proceed

in a manner according to a supervised classification setting.



Fig. 1: Example frame of X(x, y, t) showing courtyard from

MSEE Data.

A training set is produced by performing the prescribed

analysis on a large database of labelled scenes. The result

will be descriptor sets and activity density signatures for each

region segmented in each scene. The scenes are summarized

by their constituent regions.

By supplying a sufficient database of scenes with accom-

panying descriptor feature sets and activity density signatures,

it is possible to classify any incoming test/query scene by de-

composing it into regions, according to this technique, and

then comparing the descriptor sets and activity density sig-

natures to those in the database. Once similar regions in the

training set are identified, the query scene can be described as

either a match to a training scene (all similar regions in one

scene class), or a combination of regions from several training

scenes. Due to the multiple levels of description and the fine

granularity at the details, a comprehensive description for the

query scene is generated based on the training set provided.

3. RESULTS AND DISCUSSION

The framework proposed in this paper was tested on a video

sequence of a picnic scene, taking place in a courtyard, con-

taining several different regions of activity including: regions

where tents are being constructed, regions for playing games,

regions containing picnic tables at which participants can eat

and regions wherein no activity took place. The video se-

quence was captured from an overhead view at 10fps and a

resolution of 640 × 480 pixels. An example image is shown

in Figure 1.

A time-window length of 1.25min was chosen for these

experiments to highlight some instructive results. The frames

captured in the first such window were used for the test set

X(x, y, t).

3.1. Background/Foreground Separation

Applying RoSuRe-DSP to optimize for the form from Equa-

tion 3, the foreground F (x, y, t) and background B(x, y, t)
of the video sequence were separated. An example is shown

in Figure 2. The result of the decomposition illustrates com-

plete separation of the foreground and background contents:

Fig. 2: Close-up of example frame showing results of (left)

background, B(x, y, t), and (right) foreground, F (x, y, t),
separation via RoSuRe-DSP.

Fig. 3: Region boundaries produced from local maxima of D

the movers in the scene, e.g. people and their shadows, are

extracted and even the “stationary” object, e.g. trees, that

move slightly over throughout X(x, y, t) are separated as

background components. This accuracy in decomposition al-

lows for the two-pronged approach of considering the motion

elements and the background elements separately. However,

such a breakdown also affords the possibility of leveraging

the analysis of one component to address the other. Utilizing

the motion elements to segment the background into ROIs is

the next step.

3.2. The partitioning of the FOV

Proceeding with the partitioning, the summary function

P (x, y) was computed from the foreground component

F (x, y, t) as shown in Equation 4. The threshold for this

data was set at τ = 150 to produce the set Q described in

Equation 5. It was this set that was utilized for the definition

of the boundaries of the regions Vl, following Equations 7

and 8, which are enumerated in Figure 3.

3.3. Description of the ROIs

Once the regions Vl were segmented via their defined bound-

aries, descriptor sets were produced for each via the SURF-

128[9] algorithm. As described in Section 2.2, utilizing these



Fig. 4: Similarity between regions indicated by the number of

matches, normalized.

Fig. 5: Activity density time-series for regions V2 and V10, as

labeled in Figure 3.

features, it’s possible to compare the regions quantitatively by

considering the number of matching descriptor pairs among

all of the regions. An image representation of the similarity

matrix so produced is shown in Figure 4. To aid in under-

standing, the number of matches have been normalized by

the largest number of matching feature paris.

The region V7 is quite similar to several regions due to the

diversity of its contents: it contains part of a building and a

large grassy area in addition to the sidewalk. These contents it

shares with regions V2, V3 and V4. It is less similar to regions

V5, V6 and V8 since these regions do not contain any portion

of the building surrounding the courtyard but, do additionally

contain picnic tables. Regions V9, V10 and V11 are not sig-

nificantly similar to other regions, as could be intuited from

inspection.

3.4. Region Activity Description

The remaining portion of the procedure concerns the compu-

tation and comparison of the activity density signatures Al.

This was completed following the method described in Sec-

tion 2.3. First, the activity densities Al were computed from

F (x, y, t) for each ROI Vl as given by Equation 10. Examples

of these time-series are shown in Figure 5.

These time-series accurately represent the intuitive under-

standing of the activity taking place in the corresponding re-

Fig. 6: Similarity between activity density signatures, nor-

malized.

gions. At the beginning of the scene, region V2 is populated

with individuals moving throughout. Soon, within the first

10s (100 frames), the crowd exits V2 and the region remains

mostly unpopulated for the majority of the remainder of the

data with the exception of a few people passing-through near

frame 300.

Region V10 is one of the more active regions in this data

set in that several agents begin the scene by constructing a

tent therein and exit the region once the task is complete. The

activity density time-series indicated in Figure 5, again, ac-

curately represents an intuitive understanding of the activity.

A10 increases from the beginning of the scene to about frame

180 when the actors are entering the region and starting con-

struction. The magnitude of A10 remains relatively high for

many frames, corresponding to the ongoing construction of

the tent. Once the construction nears completion, the activity

density decreases as the agents exit V10.

For comparison, we proceed to compute the activity den-

sity time signatures Al as indicated in Equation 11. A simple

correlation comparison of these signatures results in the simi-

larity matrix shown in Figure 6. While there are some consis-

tent similarity results between those of the region descriptors

and the time-series, there are also dissimilarities, e.g. region

V1 is similar in descriptor feature set to region V7 but, not so

in time-series.

4. CONCLUSION AND FUTURE WORK

In this paper, we have described and demonstrated a novel

data-driven scene understanding and classification technique.

Current scene understanding approaches focus on either de-

scribing the environment capture within the scene or the

action taking place during the scene. This technique ad-

dresses scene understanding as a single problem by leverag-

ing the data available for each of these facets against the other

and then combining these intertwined results into a single

result. Continuing efforts are focused on testing the train-

ing/classification performance of this framework with more

and varied data.
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